Introduction to MPLS-based VPNs

Ferit Yegenoglu, Ph.D.
ISOCORE

ferit@isocore.com
Outline

• Introduction
• BGP/MPLS VPNs
 – Network Architecture Overview
 – Main Features of BGP/MPLS VPNs
 – Required Protocol Extensions
 – Route Distribution and Packet Forwarding
 – Building Different VPN Topologies
 – Hierarchical BGP/MPLS VPNs
 – Security
• Layer 2 VPNs
 – Point-to-point
 – Point-to-multipoint
Virtual Private Networks (VPNs)

- **Virtual**
 - Emulated connectivity over a public network
- **Private**
 - Access limited to VPN members
 - Total address and route separation
- **Network**
 - A collection of customer sites
Classification of IP VPNs

- Classification based on where VPN functions are implemented
 - Customer Edge (CE) – based VPN
 - Provider Edge (PE) – based VPN
- Classification based on service provider’s role in provisioning the VPN
 - Provider Provisioned VPN (PPVPN)
 - Customer Provisioned VPN

PE-PE tunnels (IP, IPSec, GRE, MPLS) in PE-based VPNs
PE maps CE traffic to tunnels
CE-CE tunnels (IP, IPSec, GRE, MPLS) in CE-based VPNs
Classification of IP VPNs (2)

- Classification based on protocol layer

 - Layer 2 VPNs
 - SP network switches customer Layer-2 frames based on Layer-2 header
 - SP delivers layer 2 circuits to the customer, one for each remote site
 - Customer maps their layer 3 routing to the circuit mesh
 - Customer routes are transparent to provider

 - Layer 3 VPNs
 - SP network routes incoming customer packets based on the destination IP address
 - SP network participates in customer’s layer 3 routing
 - SP network manages VPN-specific routing tables, distributes routes to remote sites
 - CPE routers advertise their routes to the provider
MPLS-based VPNs

- MPLS can provide the required tunneling mechanism
 - MPLS can be used to provide traffic engineered PE-PE tunnels
 - An additional MPLS label can also be used to associate packets with a VPN

- Layer 3 MPLS-based VPNs
 - BGP/MPLS VPNs (RFC 2547bis)

- Layer 2 MPLS-based VPNs
 - Virtual Private Wire Service (VPWS)
 - Virtual Private LAN Service (VPLS)
BGP/MPLS – Based VPNs
BGP/MPLS VPN Network Overview

Site: Customer network with mutual connectivity without using the backbone
VRF: VPN Routing and Forwarding Table
CE: Customer Edge Router
PE: Provider Edge Router
P: Provider Router
Sites and Customer Edge Devices

A site is a set of IP systems that have mutual connectivity without using the backbone.

Systems within a site may have different VPN memberships.

Attachment circuits can be PPP connections, ATM VCs, Frame Relay VCs, Ethernet connections, or an IP tunnel.

A site may belong to multiple VPNs.

CE devices are hosts or routers that are connected to PE routers by an attachment circuit. Each VPN must contain at least one CE.
Provider Edge and Core Routers

Provider Edge (PE) Routers
- Maintain VPN-related information in VPN Routing and Forwarding (VRF) tables
- Exchange routing information with the CE devices
- Exchange VPN-related information with other PEs
- Forward VPN traffic based on IP header and VPN information

Provider (P) Routers
- Forward VPN traffic transparently over established LSPs (or other tunnels)
- Maintain SP internal routes
- No VPN-specific routing information
BGP/MPLS VPN Protocols

Control Plane

OSPF
IS-IS
RIP

Static
OSPF
IS-IS
RIP
BGP

LDP, RSVP-TE
MP-IBGP

Static
OSPF
IS-IS
RIP
BGP

Data Plane

IP

IP

CE
PE
PE
CE

IP/MPLS
IP/IPSEC
IP/GRE
Main Features of BGP/MPLS VPNs

- SP assisted exchange of VPN routes without requiring a full-mesh overlay network
 - Each customer site peers only with a SP edge router
 - VPN routes can be exchanged between customer sites and the SP edge routers using OSPF, RIP, or BGP or routes can be configured statically
 - SP edge routers use full-mesh MP-IBGP to exchange routing information
Main Features of BGP/MPLS VPNs

• Scalability in the VPN Service Provider Network
 – Customer routing information is maintained at the PE routers
 – P routers are aware of only internal routes
 – Route reflectors can be used to reduce full-mesh MP-IBGP
 – Outbound route filtering can be used to reduce route updates

• Scalability in the Customer VPN
 – Each CE router peers with only a service provider PE router
Main Features of BGP/MPLS VPNs

- **Address separation**
 - Two sites can have an overlapping address space if they are members of different VPNs
Main Features of BGP/MPLS VPNs

- Alternative routes to the same system based on VPN membership
 - Sites 1, 2, and 3 form an intranet
 - Sites 1, 2, 3, and 4 form an extranet
 - Sites 2 and 3 can access the server directly
 - Site 4 accesses the server through the firewall on Site 2
Main Features of BGP/MPLS VPNs

- Security is equivalent to those of ATM/Frame Relay Networks
 - Access to VPN sites is possible only from the PE routers
 - PE routers control how incoming packets from customer sites are routed
 - SP network does not accept packets or routes from untrusted sources

Labeled packet are not accepted from outside the network

Packets are forwarded based on the information in the VRF which is totally controlled by the SP
Main Features of BGP/MPLS VPNs

• Simple control of VPN membership, topology, and route exchange
 – Full mesh, hub-and-spoke VPNs
 – Hierarchical BGP/MPLS VPNs

• QoS support through the use of traffic engineered tunnels as well as experimental bits in the MPLS shim header
Functional Requirements

- PE routers must be able to route packets differently depending on the customer site that the packet is received from
 - Multiple Routing Tables – VPN Routing and Forwarding Table (VRF)
- Core routers must not have to maintain VPN routing information
 - Tunnels between Provider Edge Routers
- PE routers must be able to identify what VPN a packet received from the core belongs to
 - VPN route label carried with packets
Protocol Requirements

- Routing protocols must have a means to differentiate between routes with identical IP address prefixes but in different VPNs
 - BGP VPN IPv4 Addresses
 - BGP Multiprotocol Extensions allow BGP to carry routes from multiple address families
- There has to be a mechanism to associate advertised routes with the VPNs that they belong
 - BGP Route Target Attribute
 - Carried as a BGP Extended Community Attribute
- VPN routes must be assigned a VPN Label
 - Labeled VPN IPv4 Routes
 - Label is carried as part of the Network Layer Reachability Information (NLRI)
VPN and Default Routing and Forwarding Tables

- Every PE-CE attachment circuit is associated, by configuration, with a VRF.
- VRF is used to route customer packets associated with a VPN.
- DFT is used to forward packets received from neighboring P and PE routers as well as packets from customer sites that are not associated with a VRF.
- A CE may be associated with one or more VRFs.
- Total separation between VRF and DFT.
- Physical port, VC-ID, VLAN ID, or IP source address can be used to determine which VRF to use for an IP packet.
Populating the VRFs

CE routers can be configured with a default route to the PE router or they can learn routes form the PE router.

PE routers use I-BGP with appropriate VPN route distinguishers and control information to exchange VPN routes.

PE routers learn customer routes by OSPF, RIP, BGP or by static configuration.
VPN-IPv4 Address Family

- Without a new address family BGP would not be able to carry identical IPv4 addresses from different VPNs.
- A VPN-IPv4 address consists of an 8-byte Route Distinguisher (RD) and a 4-byte IPv4 address.
- BGP Multiprotocol Extensions allow BGP to carry routes from multiple address families.
- A PE router needs to be configured to associate routes that lead to a particular CE with one or more RDs.
- Each VRF is associated with one RD.

<table>
<thead>
<tr>
<th>Type</th>
<th>Value</th>
<th>IPv4 address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 0</td>
<td>2-byte Admin. Subfield (AS number)</td>
<td>4-byte Assigned Number Subfield</td>
</tr>
<tr>
<td>Type 1</td>
<td>4-byte Admin. Subfield (IPv4 address)</td>
<td>2-byte Assigned Number Subfield</td>
</tr>
<tr>
<td>Type 2</td>
<td>4-byte Admin. Subfield (AS number)</td>
<td>2-byte Assigned Number Subfield</td>
</tr>
</tbody>
</table>
Duplicate Addresses using RD

Site 1
10.4/16
RD = 100.1
RD = 100.2

Site 2
10.5/16
RD = 100.3
RD = 100.4

Site 3
10.6/16
RD = 100.5

Site 4
10.5/16

Site 5
10.4/16

I-BGP

10.1-10.4/16, 100.2-10.4/16
100.1-10.4/16, 100.2-10.4/16
100.3-10.5/16, 100.4-10.6/16
100.5-10.5/16
100.4-10.6/16
Different Routes to Same System using RD

- Sites 2, 3, and 4 are members of VPN 1 (intranet)
- Sites 1, 2, 3, and 4 are members of VPN 2 (extranet)
- Sites 2, 3, and 4 have direct access to each other
- Site 1 can access sites 2, 3, and 4 only via Site 4 where there is a firewall
- Site 2, 3, and 4 routes are distributed twice with two RDs:
 - RD 1 – Used to establish direct routes between 2, 3 and 4 under intranet policy
 - RD 2 – Used to provide Site 1 access to sites 2, 3, and 4 via site 4 under extranet policy
Route Target Attribute

- Each VRF is associated with one or more Route Target (RT) attributes
 - Export Targets determine what other VRFs the routes in a particular VRF can be exported to and are carried in BGP route advertisements
 - Import Targets determine whether a route can be imported in a VRF
 - A route with an Export Target “X” gets installed in a VRF with an Import Target “X”

- RTs are carried in BGP as Extended Community Route Targets and structured similarly to the RDs

- Associating Export Targets with routes
 - All routes leading to a particular site are assigned the same RT
 - Different routes in a given site are assigned different RTs
 - Each route can be assigned multiple RTs
Relationship between RDs and RTs

- RDs convert IPv4 addresses to unique VPN IPv4 addresses that can be carried in BGP
- RTs are attributes of VPN IPv4 routes that control which sites can access these routes
- In BGP, each route can have multiple attributes, therefore the fact that a route is a member of multiple VPNs can be conveyed in one UPDATE message
- An alternative design could have used RDs to determine VPN membership
 - When a site is in multiple VPNs, its routes would be advertised multiple times, each with a different RD
 - This would not be a scalable solution
Using RDs versus RTs for Route Filtering

Using RDs to filter VPN routes

Site 1

Site 2

Site 3

Filter in RD = 100.1

Filter in RD = 100.2

RD1 = 100.1
RD2 = 100.2

Using RTs to filter VPN routes

Site 1

Site 2

Site 3

Filter in RT = 100.1

Filter in RT = 100.2

RT1 = 100.1
RT2 = 100.2

UPDATE (10.4/16, 100.1, 100.2)
Associating Export Targets with Routes (1)

- A PE can be configured to associate all routes of a site with one RT

![Diagram showing association of routes with one RT]

- A PE can be configured to associate all routes of a site with multiple RTs

![Diagram showing association of routes with multiple RTs]
Associating Export Targets with Routes (2)

- Different routes can be associated with different RTs
 - CE attaches RTs (within limits) to routes that it distributes to PE with BGP
 - CE is attached to PE by multiple attachment circuits, each configured with a different RT
Route Distribution Among PEs by BGP

- PEs can distribute VPN IPv4 routes using full-mesh I-BGP connections between them or via an I-BGP connection to a route reflector
- PEs may distribute the exact set of routes that appears in the VRF or perform aggregation
- PEs distribute routes with their address as the BGP next hop
- PEs assign and distribute MPLS labels with the routes
 - A single label may be used for the entire VRF
 - A single label may be used for each attachment circuit
 - Different labels may be used for each route
- Packets sent to VPN destinations are appended with the appropriate label
- An egress PE forwards the packet to one of its customer interfaces based on the label
Forwarding Packets based on VPN Labels

- A single label used for the entire VRF

- Different labels for different routes

PE needs to look up packet’s IP address in the VRF to determine packet’s egress attachment circuit

PE can determine packet’s egress attachment circuit based on the VPN label, without looking at VRF
Outbound Route Filtering

- If there is no outbound filtering, a PE router often receives unwanted routes from peers and filters them based on RTs.
- The number of BGP VPN route updates can be reduced by using BGP cooperative route filtering capability:
 - PE routers willing to send or receive ORFs advertise Cooperative Route Filtering Capability.
 - PE routers send ORFs in BGP Refresh messages.
 - By using Extended Communities ORF type, a PE router can request its peers to send VPN route updates for specific RT values.
 - The peers use the received ORFs as well as locally configured export target policy to constrain and filter outbound route updates.
- Cooperative route filtering conserves bandwidth and packet processing resources.
Use of Route Reflectors

- Scalability of VPN route distribution can be increased by use of BGP Route Reflectors (RR)
- Two ways to partition VPN IPv4 routes among different RRs
 - Each RR is pre-configured with a list or Route Targets
 - Each PE is a client of a subset of RRs

- RR1 and RR2 perform inbound filtering based on pre-configured list of RTs
- They can use this list of RTs to install ORFs on their RR or PE peers

- RR1 and RR2 do not perform inbound filtering on routes received from PEs
- They generate an RT list based on routes received from the PEs
- This set is used to apply inbound filters to routes received from other RRs
Packet Forwarding

- For packets received from a CE, the PE determines which VRF to use based on ingress attachment circuit
 - If the packet is destined to a site connected to the same PE, packet is forwarded without a VPN label
 - A second VRF look-up may be required when the two sites are attached to different VRFs

- For packets received from a PE, the egress attachment circuit is determined from the VPN label – a VRF look-up may be necessary
Packet Forwarding (2)

- When a packet is received from a CE and when the destination site is connected to a different PE, a VPN label is attached to the packet
 - The resulting packet is tunneled to the destination PE (BGP-Next Hop) via an MPLS, GRE, IPSec, or IP tunnel

![Diagram showing packet forwarding process with labels and hops between sites 1, 2, and 3.](image)
Route Exchange Between PE and CE

- PE router may be configured with static routes to the CE router
- PE and CE routers may be RIP or OSPF peers
 - The CE router must not re-advertise VPN routes learned from a PE back to that PE or another PE
- PE and CE routers may be BGP peers
 - Does not require running multiple protocol instances
 - Makes it easier for the CE router to pass route attributes such as Route Targets to the PE router
 - The “Site of Origin” attribute can be used to ensure that routes learned from a site are not re-distributed to the site over a different connection
- PE router may distribute the VPN routes learned from other PE routers or just a default route to the CE router
Security of BGP/MPLS VPNs

- **Built-in security features**
 - Access to VPNs is tightly controlled by the PEs
 - Total address separation by use of VPN IPv4 addresses
 - Separation of routing information by use of route targets

- **Vulnerabilities**
 - Misconfiguration of the core and attacks within the core
 - Security of the access network

- **Additional Security can be provided by combining IPSec and MPLS**
 - End-to-end IPSec overlaid on an MPLS VPN
 - IPSec in the core
End-to-end IPSec Tunnels Overlaid on a BGP/MPLS VPN

There must be a mechanism for CEs to identify IPSec tunnel endpoints.
IPSec in the Core

MPLS VPN label is preserved and MPLS-in-IP or MPLS-in-GRE encapsulation is used to create an IP tunnel.

IPSec tunnels are used in place of MPLS between PEs (i.e. BGP/IPSec based VPN)

BGP carries IPSec policy in addition to routing information

(draft-ietf-ppvpn-ipsec-2547-03.txt)
Building BGP/MPLS VPNs

- Full-Mesh VPNs
- Sites with Multiple VPN Membership
- Hub and Spoke VPNs
- Overlapping Intranet and Extranet VPNs
- Accessing Public Internet from a VPN
- Hierarchical VPNs
PE-1, PE-2, and PE-3 will install the routes learned from each other in their VRFs because the RT carried in the UPDATE message matches the VRF import RT.
Building Full-Mesh VPNs (2)

![Diagram of full-mesh VPNs with nodes and network addresses.]
Sites with Multiple VPN Membership (1)

PE-1 will install the routes learned from PE-2 and PE-3 because the RT carried in the UPDATE message matches one of the import RTs in the VRF.

PE-2 and PE-3 will not install the routes learned from each other because the RT carried in the UPDATE message does not match the VRF import RT.
Sites with Multiple VPN Membership (2)

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Site 2</th>
<th>Site 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1/16</td>
<td>10.2/16</td>
<td>10.3/16</td>
</tr>
<tr>
<td>CE-1</td>
<td>PE-1</td>
<td>PE-3</td>
</tr>
<tr>
<td>PE-1</td>
<td>CE-3</td>
<td>PE-2</td>
</tr>
</tbody>
</table>

Net. N. Hop Tag

- 10.1/16 CE-1 10
- 10.2/16 PE-2 20
- 10.3/16 PE-3 30

Net. N. Hop Tag

- 10.1/16 PE-1 10
- 10.2/16 CE-2
Building Hub and Spoke VPNs (1)

PE-3 will import the VPN routes learned from PE-1 and PE-2 to VRF-1.

VRF-1 is configured to forward all routes learned to CE-1.

PE-1 and PE-2 will not install the routes learned from each other in their VRFs because of RT mismatch.

VRF-1
- RD = 100.1
- Imp. RT = 100.1

VRF-2
- RD = 100.1
- Exp. RT = 100.2
- VPN Label = 30

PE-1 and PE-2
- RD = 100.1
- Exp. RT = 100.1
- Imp. RT = 100.2
- VPN Label = 10
- VPN Label = 20

Site 1
- 10.1/16
- CE
- PE-1
- RD = 100.1
- Exp. RT = 100.1
- Imp. RT = 100.2
- VPN Label = 10

Site 2
- 10.2/16
- PE-2
- RD = 100.1
- Exp. RT = 100.1
- Imp. RT = 100.2
- VPN Label = 20

Site 3
- 10.3/16
- CE-2
- CE-1
- PE-1
- RD = 100.1
- Imp. RT = 100.1

HUB
- 10.4/16
- 10.5/16
- 10.6/16
- 10.7/16
CE-1 advertises routes learned from the Spoke sites across the hub network.

CE-2 advertises these routes back to PE-3 over an interface with which VRF-2 is associated.

PE-1 and PE-2 install these routes to their VRFs since export and import RTs match.

VRF-2 advertises learned routes to PE-1 and PE-2 with a different export RT.

CE-2 advertises routes learned from the Spoke sites across the hub network.

UPDATE(100.2-10.1.0.0/16, RT=100.2, Label=30)

PE-1 and PE-2 install these routes to their VRFs since export and import RTs match.

VRF-2 advertises learned routes to PE-1 and PE-2 with a different export RT.

UPDATE(100.2-10.1.0.0/16, RT=100.2, Label=30)

CE-1 advertises routes learned from the Spoke sites across the hub network.

CE-2 advertises these routes back to PE-3 over an interface with which VRF-2 is associated.
Building Hub and Spoke VPNs (3)

IP Packet to 10.2.1.4

Net. N. Hop Tag
10.1/16 CE-1
10.2/16 PE-3 30
10.3/16 PE-3 30

Net. N. Hop Tag
10.1/16 PE-1 10
10.2/16 PE-2 20
10.3/16 CE-32

Net. N. Hop Tag
10.1/16 CE-32
10.2/16 CE-32
10.3/16 CE-32

CE-1
PE-1
VRF
CE-3
HUB
PE-2
VRF
VRF
PE-3
CE-31
CE-32
HUB
10.3/16
Site 3

CE-2
10.2/16
Site 2

VRF
VRF

Net. N. Hop Tag
10.1/16 PE-3 30
10.2/16 CE-2
10.3/16 PE-3 30

Site 1

10.1/16
Overlapping Intranet and Extranet VPNs (1)

Red VPN: Extranet, Hub and Spoke
Green VPN: Intranet, Full Mesh
Overlapping Intranet and Extranet VPNs (2)
Overlapping Intranet and Extranet VPNs (3)

Site 1: 10.1/16
- CE-1
- PE-1
RD = 100.1
Exp. RT = 100.1
Imp. RT = 100.2
VPN Label = 30

Site 2: 10.2/16
- CE-2
- PE-2
RD = 100.1
Exp. RT = 100.1
Imp. RT = 100.2
VPN Label = 10

Site 3: 10.3/16
- CE-31
- CE-32
RD = 100.2
Exp. RT = 100.2
Imp. RT = 100.4
VPN Label = 20

Site 4: 10.4/16
- CE-4
- PE-4
RD = 100.1
Exp. RT = 100.1
Imp. RT = 100.2
VPN Label = 40

Firewall

Slide 50
Overlapping Intranet and Extranet VPNs (4)
Overlapping Intranet and Extranet VPNs (5) Resulting VRFs
Accessing Public Internet from a VPN

Public Internet

Gateway router with NAT, firewall

Default route

Site 1

Default route

VPN Service Provider Network

Default route

Default route

CE-1

VRF

PE-1

VRF

PE-2

VRF

PE-3

Default route

CE-2

10.6/16

Site 2

10.5/16

Site 3

Internetworking 2003
Hierarchical BGP/MPLS VPNs
ISP is a Customer of VPN Service Provider (1)

ISP Customers

ISP Network

VPN Service Provider (SP) Network

VRFs carry ISP internal routes only

ISP is a Customer of VPN Service Provider (1)
ISP is a Customer of VPN Service Provider (2)

ISP and its customers exchange routes using E-BGP.

External routes are advertised within the ISP network by I-BGP.

ISP advertises its internal routes to VPN SP and learns internal routes of ISP’s other sites.

VPN SP assigns a label for each ISP internal route advertised to the ISP.

VPN SP PE routers exchange ISP internal routes by MP-BGP.

ISP advertises its internal routes to VPN SP.

VPN SP PE routers exchange ISP internal routes by MP-BGP.
ISP is a Customer of VPN Service Provider (3)
ISP is a Customer of VPN Service Provider (4)

IP packet to 162.2.1.1

162.2/16

10.1.0.0

IP packet to 162.2.1.1

Bottom label associated with the red VPN

Top label associated with the route to PE-1
VPN service Provider is a Customer of another VPN Service Provider (1)

VRFs carry 2nd tier VPN SP’s internal routes only

VRFs carry customer routes
VPN service Provider is a Customer of another VPN Service Provider (2)

2nd tier VPN SP and its customers exchange routes

2nd tier VPN SP PE routers exchange customer routes and labels

VPN SPs assign labels to exchanged routes

1st tier VPN service provider PE routers exchange 2nd tier VPN SP internal routes by MP-BGP

Two VPN SPs exchange 2nd tier VPN SP internal routes
References – BGP/MPLS-based VPNs

- draft-ietf-ppvnp-rfc2547bis-04.txt, “BGP/MPLS IP VPNs”
- draft-ietf-ppvnp-requirements-06.txt, “Service Requirements for Layer 3 Provider Provisioned Virtual Private Networks”
- draft-ietf-ppvnp-framework-08.txt, “A Framework for Layer 3 Provider Provisioned Virtual Private Networks”
- draft-ietf-ppvnp-as2547-01.txt, “Applicability Statement for VPNs Based on rfc2547bis”
- draft-ietf-ppvnp-ipsec-2547-03.txt, “Use of PE-PE IPsec in RFC2547 VPNs”
- draft-ietf-ppvnp-gre-ip-2547-02.txt, “Use of PE-PE GRE or IP in RFC2547 VPNs”
MPLS-based Layer 2 VPNs
MPLS-Based Layer 2 VPNs

- **Virtual Private Wire Service (VPWS)**
 - Point-to-point connectivity between CE devices by pseudo-wires over an IP network
 - SP network acts as a Layer 2 switch
 - Mapping to pseudo-wires can be based on incoming port or Layer 2 header

- **Virtual Private LAN Service (VPLS)**
 - Point-to-multipoint connectivity between CE devices
 - Forwarding of incoming packets is based on Ethernet addresses
 - SP network acts as a LAN bridge
Virtual Private Wire Service (VPWS)

Site 1 Site 2

PE determines outgoing pseudo-wire based on attachment circuit and L2 header

Layer 2 frame is tunneled by an MPLS LSP (or IP-IP, IP-GRE tunnels)
Since a PSN tunnel can carry multiple pseudo-wires, a de-multiplexer must be added

PE determines outgoing attachment circuit based on incoming tunnel and de-multiplexer
VPWS Reference Model and Encapsulation

Ethernet or Frame Relay packet, ATM cell, or ATM AAL-5 PDU
L2 frame can be carried with or without original header

Control word (sequence number, length, and L2 protocol flags)

MPLS Label

MPLS Label
Virtual Private LAN Service (VPLS)

- Tunnel LSPs between PE routers
- PE routers switch customer Ethernet frames and perform bridging functions of MAC address learning/aging and broadcast
- The network appears as an Ethernet switch for each VPLS instance
- Virtual Forwarding Instance (VFI) per VPN
VPLS Issues(2)

- **Scalability**
 - $N(N-1)$ VCs must be setup between PE devices for one VPLS service with N customer nodes
 - Signaling overhead
 - Packet replication requirements
 - Hierarchical VPLS can improve scalability

- **Signaling**
 - Currently LDP and BGP are being proposed for establishing VPLS pseudo-wires

- **Node and Service Discovery**
 - Capability for a PE router to discover other VPLS-capable routers
 - Proposed methods include LDP, BGP, DNS, and Radius
References – MPLS-based Layer 2 VPNs

- draft-ietf-ppvpn-l2-framework-03.txt, “L2VPN Framework”
- draft-ietf-ppvpn-l2vpn-requirements-00.txt, “Service Requirements for Layer 2 Provider Provisioned Virtual Private Networks”
- draft-ietf-pwe3-frame-relay-00.txt, “Frame Relay over Pseudo-Wires”
- draft-ietf-pwe3-atm-encap-01.txt, “Encapsulation Methods for Transport of ATM Cells/Frame Over IP and MPLS Networks”
- draft-ietf-pwe3-control-protocol-02.txt, “Pseudo-wire Setup and Maintenance using LDP”
- draft-lasserre-vkompella-ppvpn-vpls-04.txt, “Virtual Private LAN Services over MPLS”
- draft-ietf-ppvpn-vpls-bgp-00.txt, “Virtual Private LAN Service”